
PANOPLY DATA VIEWER

GISS LUNCH SEMINAR - 2015 OCT 21

ROBERT SCHMUNK

1

GISS LUNCH SEMINAR - 2015 OCT 21

PANOPLY

▸ GISS netCDF-HDF-GRIB Data Viewer

▸ “Push-button”, interactive GUI application. Runs on
Mac OS X, Windows, Linux, any desktop OS with
Java 7 installed.

▸ Pronounced “pa-nuh-plee”. Does not rhyme with
monopoly.

▸ OED definition 3.a.: “A splendid or impressive array; fine or magnificent
display; …”.

▸ Latest update, version 4.3.1, released 2015 Sep 29.

▸ Download from www.giss.nasa.gov/tools/panoply

2

http://www.giss.nasa.gov/tools/panoply

GISS LUNCH SEMINAR - 2015 OCT 21

ORIGIN OF PANOPLY: WHY?

▸ GISS/CCSR EdGCM Project needed help with a data viewer/plotter that would run
on both Mac OS X and on Windows.

▸ Educational users → viewer needs to be cheap or free, easy to install, and easy to
use.

▸ Cross-platform on a budget → Java language (orig. Java 1.2; currently 1.7).

▸ Any similarities to 1990s Spyglass Transform a bonus.

▸ Development began Spring 2002. Version 1.0 released December 2002.

▸ Concurrent discovery of Unidata’s netCDF-Java (“NJ”) library. If EdGCM added
netCDF export to model post-processing, then NJ library would handle data
viewer’s interaction with dataset.

3

GISS LUNCH SEMINAR - 2015 OCT 21

ORIGIN OF PANOPLY: 2002

▸ Panoply posted on GISS website for general download on release of ver. 1.0 in Dec
2002. Announced on giss-people mailing list Jan 2003.

▸ Soon saw use from users at other institutes, universities, labs, etc. And not just
climate scientists.

▸ NetCDF software available in 2002-2003 definitely not as numerous as today and
was often a bit clunky. For example:

▸ DOE/PNNL’s ncbrowse - easy-to-install, but use of optional color tables difficult (if
available at all) and no map projections.

▸ UCSD’s ncview - not Java; required user to compile from source.

▸ Unidata’s IDV - very new; in Java but required add’l install of Java 3D; not easy to
figure out and performance was sluggish.

4

GISS LUNCH SEMINAR - 2015 OCT 21

ORIGIN OF PANOPLY: VERSION 1.0

▸ Version 1.0 very focused on plotting lon-lat gridded GCM climate data.

▸ Optional color tables easy to use. Could be in Spyglass Transform’s PAL, Adobe’s ACT
and Apple’s CWC format.

▸ (Note: Default “panoply” and “panoply-diff” color tables date back to at least 1996,
matching one used in Hansen et al. 1996 post-Pinatubo GISTEMP paper.)

▸ Offered choice of > 12 map projections: equirectangular, Mollweide, orthographic,
Aitoff, azimuthal equal-area, etc.

▸ (Original map projection code lifted from GISS Mars24 app and expanded. Now
includes > 125 projections.)

▸ Able to combine two variables via differencing.

▸ Did not allow for plotting data that was not on a lon-lat grid. “Generic 2D” plots not
available for, cough, over 11 years. (Version 4.0, April 2014.)

5

GISS LUNCH SEMINAR - 2015 OCT 21

ON-GOING DEVELOPMENT OF PANOPLY

▸ Version 1.1 released three weeks after version 1.0. Added continent outlines and
more array combination methods.

▸ Ver. 1.2 - Zonal average line plots.

▸ Ver. 1.4 - Lat-vert plots. UDUNITS.

▸ Ver. 1.5 - Regional plots.

▸ Ver. 1.6 - PS and PDF output.

▸ Ver. 2.0 - Time-lat plots.

▸ Ver. 2.1 - Contour lines

▸ Ver. 2.2 - Able to read and plot rotated grid lon-lat data.

▸ Ver. 2.3 - Additional plot sizes, as long as they fit computer display size.

▸ Ver. 2.4 - Able to read and plot stereographic gridded data (e.g., WRF model output).

▸ Ver. 2.5 - Able to read irregular 2D lon-lat grids. Originally in context of regional oceanographic data but same
scheme applies to satellite swath data.

6

GISS LUNCH SEMINAR - 2015 OCT 21

ON-GOING DEVELOPMENT OF PANOPLY

▸ Ver. 2.6 - Vector plotting.

▸ Ver. 2.7 - netCDF version 4.

▸ Ver. 2.8 - Explicitly able to read and plot HDF data, iff able to interpret metadata.

▸ Ver 2.8.1 - Explicitly able to read and plot GRIB data.

▸ Ver. 2.8.2 - Export lon-lat plots as KMZ for use in Google Earth.

▸ Ver. 2.8.3 - JPEG and TIFF output.

▸ Ver. 2.9 - Export data in CSV and CDL text format from sources window.

▸ Ver. 3.0 - Bookmarking. Able to access remote THREDDS, OPENDAP catalogs. Animation export. Lon-vert plots.

▸ Ver. 3.2 - Able to read and plot some reduced horizontal grids.

▸ Ver. 4.0 - Generic 2D plots. Generic line plots. Lon-time and lat-time plots (Hovmöller diagrams).

▸ Ver. 4.2 - Time-vert plots.

▸ Ver. 4.2.2 - Able to change plot aspect ratio, i.e., taller or shorter.

▸ Ver. 4.3 - Fully vectorized PS and PDF output.

7

GISS LUNCH SEMINAR - 2015 OCT 21

UNIDATA’S NETCDF-JAVA (NJ) LIBRARY

▸ NJ handles all interaction with dataset. Data viewer only has to do graphics and GUI.

▸ Panoply 1.0 performed own analysis to detect longitude and latitude coordinates.
Evventually dropped in favor of using NJ to do so.

▸ NJ has over time substantially expanded ability to detect coordinate systems: lon,
lat, vert, and time dimensions; projected grids; etc. (But still not 100% success.)

▸ To do so, NJ must open dataset in “enhanced mode”. This also means NJ will
automatically unpack compressed data (scaling and offsets) and interpret out-of-
range and missing data.

▸ In some cases, NJ may construct coordinate system based on specified parameters
rather than on explicit coordinate variables.

▸ But all this requires metadata.

8

GISS LUNCH SEMINAR - 2015 OCT 21

METADATA

▸ Understanding a dataset without accompanying documentation requires metadata
— data about data — conforming to a recognized convention.

▸ netCDF-Java (NJ) includes interpreters for many “registered” conventions: some
specific to a particular model (e.g., WRF) but others very general.

▸ When in doubt, use CF (Climate and Forecast) Conventions: cfconventions.org.

▸ Also helps to use standard_names for variables and UDUNITS.

▸ Historically, netCDF dataset creators have been good about including metadata
conforming to some standard or using simple schemes that code can figure out.

▸ Typical problems: bad units (“C” ≠ “degree Celsius”), too little metadata, or too
much.

9

http://cfconventions.org

GISS LUNCH SEMINAR - 2015 OCT 21

METADATA

▸ NJ library also reads HDF datasets. Understanding HDF dataset organization is
trickier, but creators are quickly getting better about metadata.

▸ (Note: netCDF 4 ≈ HDF 5, but not exactly =.)

▸ NJ also reads some other dataset formats, e.g., GRIB (WMO GRIdded Binary). Might
require external GRIBTAB, but many built in.

▸ Other formats quietly supported.

10

GISS LUNCH SEMINAR - 2015 OCT 21

OPTIONAL COLOR TABLES

▸ Panoply comes with ~ 100 color tables built in, many variants on the Color Brewer
sequential and diverging definitions.

▸ Some additional ACT format color tables available on Panoply website.

▸ Large collection of compatible CPT format color tables on “CPT City” website:
soliton.vm.bytemark.co.uk/pub/cpt-city/

▸ Also see NCL (NCAR Graphics) color table gallery for RGB format color tables:
www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml

11

http://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml

GISS LUNCH SEMINAR - 2015 OCT 21

ON-GOING DEVELOPMENT OF PANOPLY

▸ New features and new capabilities often in response to user requests and feedback.

▸ Can you add X?

▸ Why can’t Panoply plot my data?

▸ My dataset uses this other convention, gridding scheme, etc.

▸ Response time not guaranteed. Other technical and service limitations may apply.
Offer not valid in some locations.

12

GISS LUNCH SEMINAR - 2015 OCT 21

PANOPLY DOES NOT

▸ Many things Panoply cannot do, yet:

▸ Combining > 2 arrays; e.g., averaging 12 months to plot an annual average,
merging multiple satellite swaths, or creating ensemble line plots.

▸ Plotting of scattered data points; e.g., station data, buoy data, etc.

▸ Overlaying vector data of one quantity on color data of a different quantity; e.g.,
wind vectors on a temperature field.

▸ Plotting area data not on a 2D grid; e.g., triangular mesh.

▸ Vector plots from azimuth and magnitude data.

▸ Trajectory plots.

▸ Etc.

13

GISS LUNCH SEMINAR - 2015 OCT 21

SOME EXAMPLES

▸ Working with “Cartesian” gridded climate-model data.

▸ Working with projected grids.

▸ Working with “irregular” auxiliary grids.

▸ Loading remote catalog and accessing a dataset.

14

GISS LUNCH SEMINAR - 2015 OCT 21

COMMAND-LINE PANOPLY?

▸ Many requests for non-GUI Panoply. Desired features include:

▸ Execute from console command line and create a plot based on an input file, i.e., a
script.

▸ Able to re-use script at a later date, either to re-create a plot, to re-make a plot by
tweaking parameters, or to re-make a plot with new data.

▸ Perhaps create multiple plots at one time.

▸ Perhaps run in server environment.

▸ Thus… PanoplyCL.

15

GISS LUNCH SEMINAR - 2015 OCT 21

PANOPLYCL

▸ PanoplyCL currently in beta. Around two dozen
“beta testers”, half at GISS.

▸ Some capabilities not yet (fully) coded, e.g.,
generic 2D plots and line plots.

▸ Documentation has some holes in it.

▸ Some aspects of API remain a moving target.
Feedback would really help.

▸ Latest beta and user’s guide are at
www.giss.nasa.gov/tools/panoply/…

16

http://www.giss.nasa.gov/tools/panoply/

GISS LUNCH SEMINAR - 2015 OCT 21

PANOPLYCL SCRIPTING LANGUAGE

▸ Write scripts in JavaScript that can access exposed parts of PanoplyCL Java code.

▸ Java language can parse code in other languages using script engines.

▸ Oracle’s Java distribution includes either “Rhino” or “Nashorn” engine for parsing
JavaScript.

▸ Third-party engines are available for other languages — e.g., “Jython” for Python —
but PanoplyCL API is written with assumption you are using Javascript.

▸ Command-line call requires launching Java, telling it to execute PanoplyCL code,
and also passing a script file name:

java -jar PanoplyCL.jar myscript.pjs

17

GISS LUNCH SEMINAR - 2015 OCT 21

BASIC PANOPLYCL SCRIPT
// Script parsed by PanoplyCL to create and save a plot. Usage:
// java -jar PanoplyCL.jar “tas.pjs”

// Open dataset.
var ncdata1 = panoply.openDataset ("/Users/rbs/data/modelE/pcmdi.ipcc4.giss_model_e_h.1pctto2x.run1.monthly.tas_A1.GISS3.1pctto2.nc");

// Select variable.
var ncvar1 = ncdata1.getVariable ("tas");

// Create plot.
var myplot = panoply.createPlot ("lonlat", ncvar1);

// Use myplot.set (“parameter-name”, value); to specify plot appearance settings.
// If setting not specified, then “factory default” value is applied.

// Specify plot settings.
myplot.set ("size-factor", 200);
myplot.set ("title-text", "Surface Air Temperature");

myplot.set ("scale-min", 220.);
myplot.set ("scale-max", 320.);

// Possibly ~ 40 myplot.set commands to specify plot appearance settings.
// . . .

// Variable #1 (tas), dim 1 (time) -- Set to step 2001 of 3000
myplot.setVarDimension (1, 1, 2001);

// Save plot image to disk.
myplot.saveImage ("PNG", "tas_in_pcmdi.ipcc4.giss_model_e_h.1pctt.png");

18

GISS LUNCH SEMINAR - 2015 OCT 21

GENERATING A SCRIPT

▸ No need to write a PanoplyCL script completely from
scratch.

▸ Use Panoply to create a plot, then have it export a
script that you can edit. Look for the “Export CL
Script…” item in the File menu.

▸ Scripts can be complex, using common coding
features as for-next loops, or math calculations to
determine plot settings.

▸ For example: animating a map plot using an
orthographic projection so that the Earth rotates
from one frame to the next.

19

GISS LUNCH SEMINAR - 2015 OCT 21

MORE COMPLEX PANOPLYCL SCRIPT
// java -jar PanoplyCL.jar “tas.pjs”

// Open dataset.
var ncdata1 = panoply.openDataset ("/Users/rbs/data/modelE/pcmdi.ipcc4.giss_model_e_h.1pctto2x.run1.monthly.tas_A1.GISS3.1pctto2.nc");

// Select variable.
var ncvar1 = ncdata1.getVariable ("tas");

// Create plot.
var myplot = panoply.createPlot ("lonlat", ncvar1);

// Specify plot settings.
myplot.set ("size-factor", 110);

myplot.set ("proj-name", "Orthographic");
myplot.set ("proj-lat0", 45.);

// More myplot.set commands to specify plot appearance settings.
// . . .

var lonC = 0.

// Loop over the 3000 timesteps for variable TAS
for (var i = 1; i <= 3000; i++)
{

// Select next timestep.
myplot.setVarDimension (1, 1, i);

// Rotate the projection a quarter degree from last frame.
lonC += 0.25;
myplot.set ("proj-lon0", lonC);

// Save plot image to disk. Javascript doesn’t have a sprintf function, so we have to format the number.
var istr = "" + i;
while (istr.length < 4) { istr = "0" + istr; }

myplot.saveImage ("PNG", "TAS_" + istr + ".png");
}

20

